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Abstract   
 
The transmission of sound in a duct with sudden area expansion and extended inlet is investigated in 

the case the walls of the duct lying in overlap region lined with different acoustically absorbent 

materials. By using the series expansion in overlap region and using Fourier transform technique 

elsewhere we obtain a Wiener-Hopf equation whose solution involve a set of infinitely many unknown 

expansion coefficients satisfying a system of linear algebraic equations. Numerical solution of this 

system is obtained by truncating the infinite series and then the variation of transmission coefficient for 

different values of problem parameters are displayed graphically.  
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1. Introduction  

 

It is possible to reduce the unwanted noise propagating along a duct by using a reactive or a 

dissipative silencer. In reactive silencers sudden area changes in cross sectional area help to 

reduce the energy in the transmitted wave via internal reflections. Simple expansion chambers 

work in accordance with this principle and widely investigated in literature [1], [2], [3], [4]. In 

further investigations it has been shown that the extension of inlet and outlet tubes into the 

expansion chamber increased the effciency in noise reduction [5],[6],[7]. 

It has also been proved that the treatment of the duct walls with acoustically absorbent lining is 

another effective method in reducing unwanted noise [8]. Combining the two effective 

approaches in noise reduction, transmission properties of a combination silencer consist of an 

expansion chamber whose walls are treated by acoustic liners has been analysed in [9]. 

In this paper, the transmission of sound in an extended tube resonator whose walls in overlap 

region, where extended inlet and expanding duct walls overlap, are treated by different locally 

reacting lining is investigated. So the main objective of this paper is to reveal the influence of the 

partial lining on the transmitted field and to present an alternative method of formulation. The 

method adopted in this paper consists of expanding the field in the overlap region into a series of 

complete set of orthogonal eigenfunctions and using the Fourier transform technique elsewhere. 

The problem is then reduced directly into a Wiener-Hopf equation whose solution involve a set of 

infinitely many unknown expansion coefficients satisfying a system of linear algebraic equations. 

Numerical solution to these systems are obtained for various values of the parameters of the 

problem such as the radii of the semi infinite waveguides, the overlap length and the impedance 

loading whereby the effects of these parameters on the transmitted field are presented 

graphically. 

The time dependence is assumed to be exp(-it) with  being the angular frequency and 

suppressed throughout this paper.  
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2. Materials and Method 

 

Consider two opposite semi-infinite circular cylindrical waveguides of different radii with 

common longitudinal axis, say z, in a cylindrical polar coordinate system (ρ, ,z). They occupy 

the regions ρ = a; z < l and ρ = b > a; z > 0; respectively, where l represents the overlap length. 

These two waveguides are connected with a vertical wall at a < ρ < b, z = 0. The parts of the 

surfaces ρ = a+0 and ρ = b - 0 lying in the overlap region 0 < z < l of the waveguides are assumed 

to be treated by acoustically absorbing linings which are characterized by constant but different 

surface impedances respectively, while the remaining parts are perfectly rigid (see Fig. 1). The 

waveguides are immersed in the inviscid and compressible stationary fluid of density ρ0 and 

sound speed c. A plane sound wave is incident from the positive z-direction, through the 

waveguide of radius ρ = a. From the symmetry of the geometry of the problem and the incident 

field the scattering field everywhere will be independent of the  coordinate. We shall therefore 

introduce a scalar potential u(ρ,z) which defines the acoustic pressure and velocity by p = iρ0u 

and v = grad u, respectively. 

 
Figure 1. Geometry of the problem 

 

It is convenient to write the total field in different regions as: 

 

𝑢𝑇(𝑟, 𝑧) =     {
𝑢1(𝜌, 𝑧) + 𝑢𝑖(𝜌, 𝑧)                                                         ,        𝜌 < 𝑎, 𝑧 ∈ (−∞, ∞)

𝑢2
(1)(𝜌, 𝑧) [𝐻(𝑧) − 𝐻(𝑧 − 𝑙)] + 𝑢2

(1)(𝜌, 𝑧)𝐻(𝑧 − 𝑙),    𝑎 < 𝜌 < 𝑏, 𝑧 ∈ (0, ∞)
       (1)         

 

where 𝐻(𝑧) is the unit step function and, 

 

𝑢𝑖(𝜌, 𝑧) = 𝑒𝑖𝑘𝑧                                                                              (2)                                                                                                                               

 

is the incident wave with 𝑘 = 𝜔/𝑐 being the wave number. For the sake of analytical 

convenience we will assume that the surrounding medium is slightly lossy and k has a small 

positive imaginary part. The lossless case can be obtained by letting  Im(𝑘) → 0 at the end of the 

analysis. 

 

The unknown scalar potentials 𝑢1(𝜌, 𝑧) and 𝑢2
(1,2)

(𝜌, 𝑧) satisfy the Helmholtz equation in the 

regions 𝑧 ∈ (−∞, ∞) and 𝑧 ∈ (0, ∞), respectively. 
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[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) +

∂2

∂z2 + 𝑘2] 𝑢1,2(𝜌, 𝑧) = 0                                                (3)                                                                                           

 

together with the boundary conditions and continuity equations: 
𝜕

𝜕𝜌
𝑢1(𝑎, 𝑧) = 0   ,          𝑧 < 𝑙                                                        (4) 

𝜕

𝜕𝑧
𝑢2

(1)
(𝜌, 0) = 0   , 𝑎 < 𝜌 < 𝑏                                               (5) 

[𝑖𝑘𝜂1 +
𝜕

𝜕𝜌
] 𝑢2

(1)
(𝑎, 𝑧) = 0   , 0 < 𝑧 < 𝑙                                                (6) 

[𝑖𝑘𝜂2 −
𝜕

𝜕𝜌
] 𝑢2

(1)(𝑏, 𝑧) = 0   , 0 < 𝑧 < 𝑙                                                (7) 

𝜕

𝜕𝜌
𝑢2

(2)(𝑏, 𝑧) = 0   ,          𝑧 > 𝑙                                                        (8) 

𝜕

𝜕𝑧
𝑢2

(1)(𝜌, 𝑙) −
𝜕

𝜕𝑧
𝑢2

(2)(𝜌, 𝑙) = 0   ,       𝑎 < 𝜌 < 𝑏                                                 (9) 

𝑢2
(1)

(𝜌, 𝑙) − 𝑢2
(2)

(𝜌, 𝑙) = 0   ,       𝑎 < 𝜌 < 𝑏                                               (10) 

𝜕

𝜕𝜌
[𝑢1(𝑎, 𝑧) + 𝑢𝑖(𝑎, 𝑧)] =

𝜕

𝜕𝜌
𝑢2

(2)
(𝑎, 𝑧) ,   𝑧 > 𝑙                                          (11) 

𝑢1(𝑎, 𝑧) + 𝑢𝑖(𝑎, 𝑧) = 𝑢2
(2)(𝑎, 𝑧)  ,     𝑧 > 𝑙                                             (12) 

The above mixed boundary value problem will be solved mainly by using Fourier transform 

technique together with series expansion of unknown field in overlap region. 

2.1. Fourier transformation/Wiener-Hopf equations  

 

Consider the Fourier transform of the Helmholtz equation in the region ρ < a for z  (-,), 

namely, 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) + (𝑘2 − 𝛼2)] 𝐹(𝜌, 𝛼) = 0                                                (13) 

where 𝐹(𝜌, 𝛼) is the Fourier transform of the field 𝑢1(𝜌, 𝑧) defined to be 

𝐹(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒𝑖𝛼𝑧𝑑𝑧

∞

−∞

= 𝑒𝑖𝛼𝑙[𝐹+(𝜌, 𝛼) + 𝐹−(𝜌, 𝛼)]                               (14) 

𝐹±(𝜌, 𝛼) are half-plane analytical functions on complex -plane defined by Fourier integrals as: 

𝐹±(𝜌, 𝛼) = ± ∫ 𝑢1
𝑒(𝑟, 𝑧)𝑒𝑖𝛼(𝑧−𝑙)𝑑𝑧

±∞

𝑙

                                                 (15) 
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Owing to the analytical properties of 𝐹±(𝜌, 𝛼) the solution of (13) reads 

𝐹+(𝜌, 𝛼) + 𝐹−(𝜌, 𝛼) = −�̇�+(𝑎, 𝛼)
𝐽0(𝐾𝜌)

𝐾(𝛼)𝐽1(𝐾𝑎)
                                      (16) 

where 𝐾(𝛼) = √𝑘2 − 𝛼2 is the square root function defined by 𝐾(0) = 𝑘. The dot (∙) over F 

represents the derivative with respect to ρ and 𝐽𝑛 stands for the Bessel function of integer order. 

In the region a < ρ < b for z  (l,) , half Fourier transform of the Helmholtz equation becomes 

 

[
1

𝜌

∂

∂ρ
(𝜌

∂

∂ρ
) + 𝐾2(𝛼)] 𝐺+(𝜌, 𝛼) =

𝜕

𝜕𝑧
𝑢2

(2)
(𝜌, 𝑙) − 𝑖𝛼𝑢2

(2)
(𝜌, 𝑙)                        (17) 

where 𝐺+(𝜌, 𝛼) is an analytic function in the upper half of the -plane which is defined as 

𝐺+(𝜌, 𝛼) = ∫ 𝑢2
(2)

(𝜌, 𝑧)𝑒𝑖𝛼(𝑧−𝑙)𝑑𝑧

∞

𝑙

                                                 (18) 

The general solution of (17) includes particular part in addition to homogeneous solution. To find 

the particular solution we use Green’s function technique. Without going into detail we obtain the 

solution of (17) as 

𝐺+(𝜌, 𝛼) = −�̇�+(𝑎, 𝛼)
[𝐽0(𝐾𝜌)𝐾𝑌1(𝐾𝑏) − 𝑌0(𝐾𝜌)𝐾𝐽1(𝐾𝑏)]

𝐾2(𝛼)[𝐽1(𝐾𝑎)𝑌1(𝐾𝑏) − 𝐽1(𝐾𝑏)𝑌1(𝐾𝑎)]
     

+ ∫ [
𝜕

𝜕𝑧
𝑢2

(2)(𝑡, 𝑙) − 𝑖𝛼𝑢2
(2)(𝑡, 𝑙)] ℋ(𝑡, 𝜌, 𝛼) 𝑡 𝑑𝑡

∞

𝑙

                                                                 (19) 

where ℋ(𝑡, 𝜌, 𝛼) is a suitable Green’s function to determine the particular solution. 

Now using continuity relations (11) and (12) we obtain the following equation valid in the strip 

𝐼𝑚(−𝑘) < 𝐼𝑚(𝛼) < 𝐼𝑚(𝑘), 

 

�̇�+(𝑎, 𝛼)
𝑁(𝛼)

𝐾2(𝛼)
+

𝑎

2
𝐹−(𝑎, 𝛼) =

𝑏

𝜋𝑎

(𝑓0 − 𝑖𝛼𝑔0)

𝑘2 − 𝛼2
+

1

𝜋
∑

𝐽1(𝐾𝑚𝑏)

𝐽1(𝐾𝑚𝑎)

(𝑓𝑚 − 𝑖𝛼𝑔𝑚)

𝛼𝑚
2 − 𝛼2

∞

𝑚=1

−
𝑎

2

𝑒𝑖𝑘𝑙

𝑖(𝑘 + 𝛼)
              (20) 

which is the Wiener-Hopf equation to be solved through classical procedures. Here, 𝑁(𝛼) stands 

for the kernel function 

𝑁(𝛼) =
𝐽1

(𝐾𝑏)

𝜋[𝐽1
(𝐾𝑎)𝑌1(𝐾𝑏) − 𝐽1

(𝐾𝑏)𝑌1(𝐾𝑎)]𝐽1
(𝐾𝑎)

= 𝑁+(𝛼)𝑁−(𝛼)                       (21) 

Performing standard factorization and decomposition procedures and then applying Liouville’s 

theorem we get the solution of the Wiener-Hopf equation in (20) of the form: 

 

�̇�+(𝑎, 𝛼)
𝑁+(𝛼)

(𝑘 + 𝛼)
= −

𝑎

𝜋𝑏

(𝑓0 + 𝑖𝑘𝑔0)

(𝑘 + 𝛼)𝑁+(𝑘)
 

+
1

𝜋
∑

𝐽1(𝐾𝑚𝑏)

𝐽1(𝐾𝑚𝑎)

(𝑘 + 𝛼𝑚)

𝑁+(𝛼𝑚)

(𝑓𝑚 + 𝑖𝛼𝑚𝑔𝑚)

2𝛼𝑚(𝛼𝑚 + 𝛼)

∞

𝑚=1

−
𝑘𝑎 𝑒𝑖𝑘𝑙

𝑖(𝑘 + 𝛼)𝑁+(𝑘)
  (22) 

 

where 𝐾(𝛼𝑚) = 𝐾𝑚  (𝑚 = 1,2 … ) are the zeros of the function 𝐾(𝛼)[𝐽1
(𝐾𝑎)𝑌1(𝐾𝑏) −

𝐽1
(𝐾𝑏)𝑌1(𝐾𝑎)] and 𝑓𝑚, 𝑔𝑚’s are expansion coefficients and will be determined later. 𝑁+(𝛼) is the 

split function resulting from the Wiener-Hopf factorization of 𝑁(𝛼) and its explicit expression 

can be found in [10]. 
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2.2. Series Expansion and Determination of Unknown Coefficients 

 

The unknown field 𝑢2
(1)(𝜌, 𝑧) in the region a < ρ < b, 0 < z < l can be expressed is terms of the 

waveguide modes as 

𝑢2
(1)(𝜌, 𝑧) = ∑ 𝑎𝑛[𝑒𝑖𝛽𝑛𝑧 + 𝑒−𝑖𝛽𝑛𝑧][𝐽0(𝛾𝑛𝜌) − 𝑅𝑛𝑌0(𝛾𝑛𝜌)]

∞

𝑛=0

                         (23) 

with  

𝑅𝑛 =
𝑖𝑘𝜂1𝐽0(𝛾𝑛𝑎) − 𝛾𝑛𝐽1(𝛾𝑛𝑎)

𝑖𝑘𝜂1𝑌0(𝛾𝑛𝑎) − 𝛾𝑛𝑌1(𝛾𝑛𝑎)
=

𝑖𝑘𝜂2𝐽0(𝛾𝑛𝑏) + 𝛾𝑛𝐽1(𝛾𝑛𝑏)

𝑖𝑘𝜂2𝑌0(𝛾𝑛𝑏) + 𝛾𝑛𝑌1(𝛾𝑛𝑏)
                     (24) 

where 𝜂1,2 are admittance values related with impedances as 𝑍𝑖 =
1

𝜂𝑖
 (𝑖 = 1,2) and 𝛾𝑛’s are the 

roots of the equation 
𝑖𝑘𝜂1𝐽0(𝛾𝑛𝑎) − 𝛾𝑛𝐽1(𝛾𝑛𝑎)

𝑖𝑘𝜂1𝑌0(𝛾𝑛𝑎) − 𝛾𝑛𝑌1(𝛾𝑛𝑎)
−

𝑖𝑘𝜂2𝐽0(𝛾𝑛𝑏) + 𝛾𝑛𝐽1(𝛾𝑛𝑏)

𝑖𝑘𝜂2𝑌0(𝛾𝑛𝑏) + 𝛾𝑛𝑌1(𝛾𝑛𝑏)
= 0                     (25) 

while 𝛽𝑛’s are defined as 

𝛽𝑛 = √𝑘2 − 𝛾𝑛
2  ,    𝑛 = 1,2, …                                               (26) 

Taking into account continuity relations (9) and (10) together with the expression (23) and W-H 

solution (22), we obtain a set of linear algebraic equations in terms of the unknown coefficients 

𝑎𝑛.  

 

 

𝜋2

2
𝑁+(𝑘) ∑ 𝑎𝑛[(𝑘 − 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝑘 + 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]∆0𝑛=

∞

𝑛=0

 

−
1

𝑁+(𝑘)𝑆0
∑[𝑎𝑛(𝑘 + 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝑘 − 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]∆0𝑛                                                                         

∞

𝑛=0

 

−𝑘 ∑ ∑ [𝑎𝑛(𝛼𝑚 + 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝛼𝑚 − 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]
∆𝑚𝑛

𝛼𝑚𝑁+(𝛼𝑚)𝑆𝑚
−

𝜋𝑘𝑎𝑒𝑖𝑘𝑙

𝑁+(𝑘)

∞

𝑚=1

∞

𝑛=0

        (27) 

 

 

𝜋2

2
𝑁+(𝛼𝑟) ∑[𝑎𝑛(𝛼𝑟 − 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝛼𝑟 + 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]∆𝑟𝑛=

∞

𝑛=0

 

−
1

𝑁+(𝑘)𝑆0
∑[𝑎𝑛(𝑘 + 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝑘 − 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]∆0𝑛                                                                         (𝑟 = 1,2, … )

∞

𝑛=0

 

− ∑ ∑ [𝑎𝑛(𝛼𝑚 + 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝛼𝑚 − 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]
(𝑘 + 𝛼𝑚)∆𝑚𝑛

2𝛼𝑚𝑁+(𝛼𝑚)𝑆𝑚

(𝑘 + 𝛼𝑟)

(𝛼𝑚 + 𝛼𝑟)
−

𝜋𝑘𝑎𝑒𝑖𝑘𝑙

𝑁+(𝑘)

∞

𝑚=1

∞

𝑛=0

        (28) 

 

where 

𝑆0 =
2

𝜋2

𝑎2 − 𝑏2

𝑎2
       ,       𝑆𝑚 =

2

𝜋2

𝐽1
2(𝐾𝑚𝑎) − 𝐽1

2(𝐾𝑚𝑏)

𝐽1
2(𝐾𝑚𝑏)

                              (29) 
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∆0𝑛=
2

𝜋𝛾𝑛
{[𝐽1(𝛾𝑛𝑎) − 𝑅𝑛𝑌1(𝛾𝑛𝑎)] −

𝑏

𝑎
[𝐽1(𝛾𝑛𝑏) − 𝑅𝑛𝑌1(𝛾𝑛𝑏)]}                    (30) 

 

∆𝑚𝑛=
2

𝜋

𝛾𝑛

𝛾𝑛
2 − 𝐾𝑚

2 {[𝐽1(𝛾𝑛𝑎) − 𝑅𝑛𝑌1(𝛾𝑛𝑎)] −
𝐽1(𝐾𝑚𝑎)

𝐽1(𝐾𝑚𝑏)
[𝐽1(𝛾𝑛𝑏) − 𝑅𝑛𝑌1(𝛾𝑛𝑏)]}          (31) 

 

Solving the above set of equations (27-28) numerically we determine 𝑓𝑚 and 𝑔𝑚 from the 

relations.   

𝑓0 + 𝑖𝛼𝑔0 =
𝑖

𝑆0
∑[𝑎𝑛(𝛼 + 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝛼 − 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]∆0𝑛

∞

𝑛=0

                    (32) 

𝑓𝑚 + 𝑖𝛼𝑔𝑚 =
𝑖

𝑆𝑚
∑[𝑎𝑛(𝛼 + 𝛽𝑛)𝑒𝑖𝛽𝑛𝑙 + (𝛼 − 𝛽𝑛)𝑒−𝑖𝛽𝑛𝑙]∆𝑚𝑛

∞

𝑛=0

                   (33) 

 

2.3. Reflection and Transmission Coefficients 

 

The scattered field 𝑢1(𝜌, 𝑧) can be obtained by taking the inverse Fourier transform of 𝐹(𝜌, 𝛼). 

From the definition (14) and solution (16) we can write, 

 

𝑢1(𝜌, 𝑧) = −
1

2𝜋
∫ �̇�+(𝑎, 𝛼)

𝐽0
(𝐾𝜌)

𝐾(𝛼)𝐽1
(𝐾𝑎)

𝑒−𝑖𝛼(𝑧−𝑙)𝑑𝛼
∞

−∞

                        (34) 

 

The evaluation of this integral for z < l and z > l will give us the reflected wave and the 

transmitted wave, respectively. The reflection coefficient R of the fundamental mode is defined 

as the complex coefficient of the term exp(-ikz) and is computed from the contribution of the first 

pole at 𝛼 = 𝑘. The result is 

 

𝑅 = −
𝑒𝑖2𝑘𝑙

[𝑁+(𝑘)]2
−

𝑖

𝜋

(𝑓0 + 𝑖𝑘𝑔0)

𝑘𝑏[𝑁+(𝑘)]2
𝑒𝑖𝑘𝑙 +

𝑖

𝜋

𝑒𝑖𝑘𝑙

𝑎𝑁+(𝑘)
∑

𝐽1(𝐾𝑚𝑏)

𝐽1(𝐾𝑚𝑎)

(𝑓𝑚 + 𝑖𝛼𝑚𝑔𝑚)

𝛼𝑚𝑁+(𝛼𝑚)

∞

𝑚=1

                (35) 

Similarly, the transmission coefficient T of the fundamental mode which is defined as to be the 

complex coefficient of exp(ikz) is calculated from the contribution at the pole 𝛼 = −𝑘 as, 

 

𝑇 =
𝑎2

𝑏2
+

𝑖𝑒−𝑖𝑘𝑙

𝜋𝑘𝑎
(

𝑏

𝑎
−

𝑎

𝑏
) (𝑓0 + 𝑖𝑘𝑔0)                                                 (36) 

 

3. Results and Discussion 

 

In order to show the effects of the parameters like the length of the extended inlet l and the 

surface admittances 𝜂1,2 on the sound transmission, some numerical results showing the variation 

of transmission coefficient T are presented. In all numerical calculations the solution of the 

infinite system of algebraic equations is obtained by truncating the infinite series at N = 5 , since 

the transmission coefficient becomes insensitive for N > 5. We also limit ourselves with only 

imaginary values of surface admittances for simplicity. Such that 𝜂1,2 = 𝑖𝑋1,2  , 𝑋 ∈ ℝ. 
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Figure 2. Transmission coefficient T versus the surface admittance 𝜂2 = 𝑖𝑋2  , 𝑋2 > 0 for different 

values of 𝜂1 = 𝑖𝑋1 
 

 

 
Figure 3. Transmission coefficient T versus the surface admittance 𝜂2 = 𝑖𝑋2  , 𝑋2 < 0 for different 

values of 𝜂1 = 𝑖𝑋1 
 

 

In Fig. 2 and Fig. 3, as the admittance 𝑋2 of the lateral wall of the expanding duct increases the 

transmitted field is ascending until at some value of 𝑋2 then it starts to attenuate gradually. But 

for negative values of 𝑋2 the attenuation is more visible especially around −0.5 < 𝑋2 < 0. For 

different values of 𝑋1 some decrease in the transmitted field is observed. 
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Figure 4. Transmission coefficient T versus the extended inlet length kl for different values of 𝑋1 and 𝑋2. 

 

 

In Fig. 4, an oscillatory behaviour is seen for increasing values of the extended inlet length kl, but 

this behaviour is broken for negative values of 𝑋1 and 𝑋2. 

 

 

Conclusions  

 

This paper examines the transmission of sound waves in an extended tube resonator whose walls 

are treated by acoustically absorbing materials in overlap region. To analyse the problem a hybrid 

method of formulation consisting of expressing the total field in terms of complete sets of 

orthogonal waveguide modes and using the Fourier transform elsewhere is adopted. The mixed 

boundary value problem is reduced to a Wiener-Hopf equation whose solution involves infinitely 

many expansion coefficients satisfying a system of linear algebraic equations. These equations 

are solved numerically and the effects of various problem parameters on transmitted field are 

displayed graphically. It was seen that adjusting the impedance values in overlap region it is 

possible to control the amount of the transmission from inner duct into the outer one within 

reasonable bounds. As a future work a similar problem now with an extended inlet will be 

studied following the same method used in here. 
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